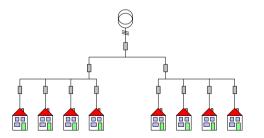
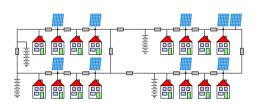
Stability in DC Grids

THUAS Delft, The Netherlands Prof.oP. dr. ir. P.J. van Duijsen

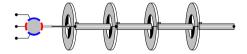
dc-lab.org


October 23.2025

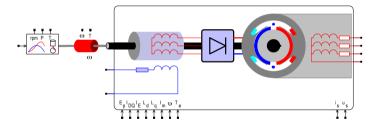

Table of contents

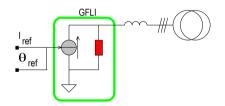
- Difference in stability AC DC grids
- DC grid Components
- Large Signal Stability
- Small Signal Stability
- Conclusions

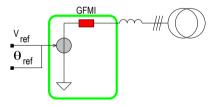
Structure


- AC Grid: Top-Down structure
 - ► Mostly Consumers
- DC Grid: Radial, Ring, Meshed,....
 - Prosumers

Inertia in the AC Grid

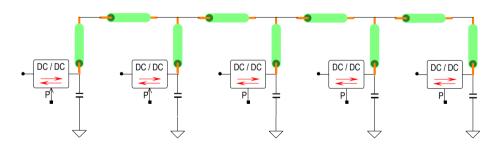

- Synchronous Generator
- Power Converter


Inertia in the AC Grid


ullet Synchronous Generator $J=rac{1}{2}mr^2=$ Single Large Inertia

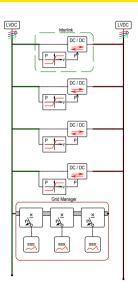
Inertia in the AC Grid

- Power Converter → No Inertia
 - ► Grid Following (Current Source Inverter follows AC frequency and phase)
 - ► Grid Forming (Voltage Source inverter with frequency droop control $\theta_{ref} = \theta_N + k_p(P_{ref} P)$



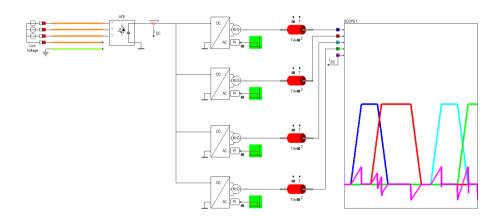
Inertia in the DC Grid

Same problem in the DC Grid:


- Many Power Converters
- Many small inertia's

Main Components

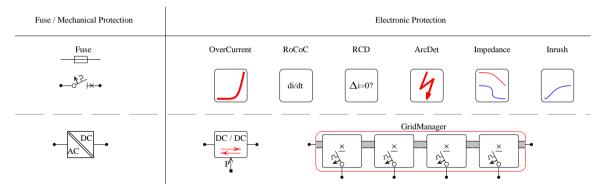
Two main components:


- Interlink
 - ► Interface between two grids
 - ► Interface between Grid and Prosumer
- Grid Manager
 - ► Interface towards prosumers

Typical Prosumers

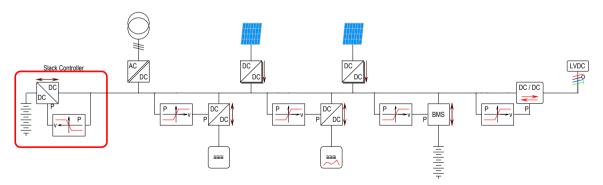
Typical Prosumers connected via a Grid Manager or Interlink

- Solar converter + MPP
- Battery + BMS
- Inverter AC motor control
- Inverter AC Grid interface
- Inverter AC single phase Socket



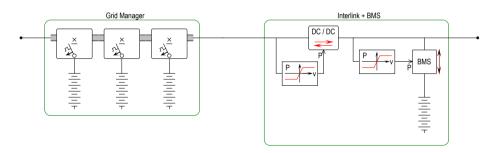
Data-center: Standard 400 volt

Protection


Grid Manager and Interlink contain Protection

Slack Controller

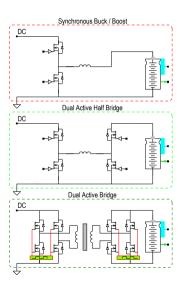
Slack controller that regulates the voltage level is required.


- Injects/Absorbs energy from the DC Grid to maintain the voltage level
 - ► Droop Control (Preferred)
 - ► Hierarchical Control
- Requires Storage

Slack Controller Converter

Slack controller is typically

- Grid Manager + Battery
- Interlink + Battery

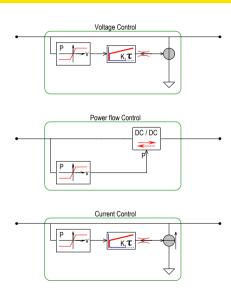

Power Electronics Converters

Interface to Battery

• Synchronous Buck

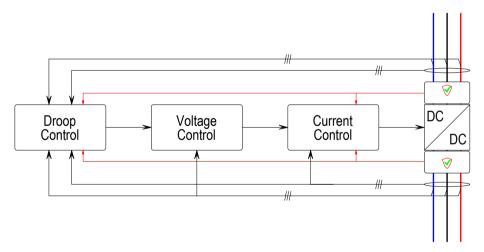
DAHB

DAB


Large Signal Stability

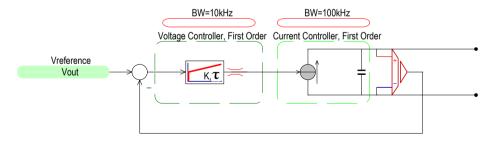
Droop control regulates

Output voltage

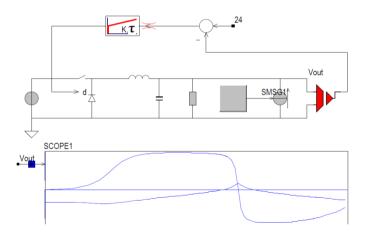

Bidirectional power flow

• Input or output current

Small Signal Stability


Small Signal Stability Analysis: Bandwidth (s, ms, μ s)

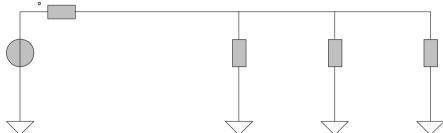
Order reduction in Power Electronics


Discontinuous operation or Current Mode Control reduces the order of the transfer functions Converter becomes a controlled current source with parallel capacitor

- ullet Boost converter in discontinuous mode o first order model
- ullet Synchronous Buck in discontinuous mode o first order model
- ullet Buck and/or Boost with current mode control o first order model
- DAB with Phase Shift control → first order model

Small Signal Stability

Small Signal Stability Analysis: Bode Plot ightarrow Output Impedance, measured in Caspoc


Small Signal Stability

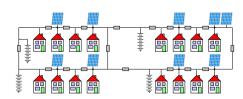
Middlebrook Stability Criteria

$$Z_{out}^{Converter} < Z_{in}^{DCgrid}$$

for every frequency......

Conclusion

• Inertia AC >> Inertia DC


AC:Consumers & DC:Prosumers

• Grid Manager & Interlink & Protection

Large signal stability: Slack Controller

• Small Signal Stability: $Z_{out} << Z_{in}$

Thank you! www.dc-lab.org P.J.vanDuijsen@hhs.nl

